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Abstract This paper concerns the problem of constructing joint prediction regions
having coverage probability equal or close to the target nominal value. In particular,
the focus is on prediction regions defined using a system of simultaneous prediction
limits. These regions are not necessarily of rectangular form and each component
prediction interval depends on the preceding future observations. The specification
of prediction regions with well-calibrated coverage probability has been considered
in [2] and [5]. In this paper we consider an asymptotically equivalent procedure,
which extends to the multivariate setting the bootstrap-based approach proposed in
[3]. A simple application to autoregressive time series models is presented.
Abstract In questo lavoro si considera il problema della costruzione di regioni di
previsione con probabilità di copertura uguale o prossima a quella nominale, con
particolare attenzione a regioni basate su limiti di previsione simultanei. Tali regioni
non hanno necessariamente una forma rettangolare e ogni intervallo componente
dipende dalle osservazioni future precedenti. La specificazione di regioni ben cali-
brate è stata studiata in [2] e [5]. In questo contributo si presenta una procedura
di calcolo asintoticamente equivalente, e di facile implementazione, che estende
all’ambito multivariato la procedura bootstrap introdotta in [3]. Si propone, infine,
una semplice applicazione al caso dei modelli autoregressivi per serie storiche.
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1 Introduction and preliminaries

This paper concerns the problem of constructing multivariate prediction regions
having coverage probability equal or close to the target nominal value. In partic-
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ular, the focus here is on multivariate prediction regions defined using a system
of simultaneous prediction limits. These regions are not necessarily of rectangular
form and they can be usefully considered whenever there is a natural order in the
observations, such as for time series data, since each component prediction interval
turns out to be influenced by the preceding future observations. With regard to time
series applications, a system of simultaneous prediction intervals could be viewed
as an alternative to a sequence of marginal prediction intervals at different periods
into the future, which do not properly account for the actual dynamic evolution of
the interest phenomenon.

Let (Y,Z) be a continuous random vector having joint density function f (y,z;θ),
with θ ∈Θ ⊆ Rd, d ≥ 1, an unknown d-dimensional parameter; Y = (Y1, . . . ,Yn),
n ≥ 1, is observable, while Z = (Z1, . . . ,Zm), m ≥ 1, denotes a future, or yet unob-
served, random vector. Although prediction problems may be studied from different
perspectives, the aim here is to define an α-prediction region for Z, that is a ran-
dom set R(Y,α) ⊂ Rm, depending on the observable sample Y and on the nominal
coverage probability α , such that

PY,Z{Z ∈ R(Y,α);θ}= EY [PZ|Y{Z ∈ R(Y,α)|Y ;θ};θ ] = α, (1)

for every θ ∈Θ and for any fixed α ∈ (0,1). The above probability is called cov-
erage probability and it is calculated with respect to the joint distribution of (Z,Y );
moreover, the expectation is with respect to Y and PZ|Y{·;θ} is the probability dis-
tribution of Z given Y .

When there exists a transitive statistics U = g(Y ), it is natural to consider the
conditional coverage probability such that, exactly or approximately,

PY,Z|U{Z ∈ R(Y,α)|U = u;θ}= EY |U [PZ|U{Z ∈ R(Y,α)|U ;θ}|U = u;θ ] = α, (2)

where the probability and the expectation are conditioned on U = u. For example,
if we consider an autoregressive (AR) model of order 1, the transitive statistics is
U = Yn. Obviously, conditional solutions satisfying (2) also satisfy (1) and, when
we can not find a transitive statistic, the conditional approach is meaningless.

The easiest way for making prediction on Z is to define a prediction region by
using the estimative (plug-in) predictive distribution PZ|Y{·; θ̂}, where the unknown
parameter θ is substituted with an asymptotically efficient estimator θ̂ based on Y ,
such that θ̂ −θ = Op(n−1/2); we usually consider the maximum likelihood estima-
tor or any asymptotically equivalent alternative estimator. However, estimative α-
prediction regions Re(Y,α) are not entirely adequate predictive solutions, since the
additional uncertainty introduced by assuming θ = θ̂ is underestimated and then the
(conditional) coverage probability differs from α by a term usually of order O(n−1).
This lack of accuracy can be substantial for small n and/or large m.

Here we focus on a particular estimative prediction region Re(Y,α) based on the
system of simultaneous prediction limits defined as quantiles of the conditional dis-
tributions of the components of vector Z = (Z1, . . . ,Zm). We assume, for simplifying
the exposition, that (Y,Z) follows a first-order Markovian dependence structure (so
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that U = Yn) and then we set

Re(Y,α) = {z ∈ Rm : zi ≤ q̂i(αi), i = 1, . . . ,m}, (3)

where q̂i(αi) = qi(αi,zi−1; θ̂), i = 1, . . . ,m, is the αi-quantile of the conditional dis-
tribution of Zi given Zi−1 = zi−1, evaluated at θ = θ̂ , with Z0 = Yn. Finally, we as-
sume ∏

m
i=i αi = α in order to assure that Re(Y,α) is an α-prediction region, namely

that PZ|Yn{Z ∈ Re(Y,α)|Yn = yn; θ̂} = α . Note that the conditional prediction limit
q̂i(αi), for each i = 2, . . . ,m, is obtained recursively as a function of the previous,
unknown future observation zi−1.

Corcuera and Giummolè [2] find that the (conditional) coverage probability of
the estimative prediction region (3) is

PY,Z|Yn{Z∈Re(Y,α)|Yn = yn;θ}=EY |Yn

{∫ q̂1(α1)

−∞

· · ·
∫ q̂m(αm)

−∞

fZ|Yn(z|Yn;θ)dz|Yn = yn;θ

}
=Cm(α1, . . . ,αm;θ ,yn) = α +Qm(α1, . . . ,αm;θ ,yn)+O(n−3/2),

where fZ|Yn(z|yn;θ) is the joint conditional density of Z given Yn = yn. Moreover,
after tedious calculations, an explicit expression for the O(n−1) coverage error term
Qm(α1, . . . ,αm;θ ,yn) is also derived.

2 Improved simultaneous prediction

In order to improve the estimative predictive approach a number of solutions have
been proposed. One of these strategies (see, for example, [1] and [4]) is to define
an explicit modification for the estimative prediction limits, so that the associated
coverage probability turns out to be equal to the target α with a high degree of
accuracy. With regard to the univariate case (namely, m = 1, Z = Z1 and α = α1),
given the estimative α1-prediction limit q̂1(α1), it is easy to prove that the modified
estimative prediction limit

q̃1(α1) = q̂1(α1)−
Q1(α1; θ̂ ,yn)

fZ1|Yn(q̂1(α1)|yn; θ̂)
, (4)

reduces the coverage error to order o(n−1). Here, fZ1|Yn(z1|yn;θ) is the conditional
density function of Z1 given Yn = yn. A potential drawback of this strategy is that the
evaluation of the fundamental term Q1(α1;θ ,yn) may require complicated asymp-
totic calculations. To overcome this difficulty, Ueki and Fueda [3] show that the
modifying term of the improved prediction limit (4) can be equivalently expressed
as q̂1(C1(α1;θ ,yn))− q̂1(α1) and then, to the relevant order of approximation, the
modified estimative prediction limit (4) corresponds to

q̃1(α1) = 2q̂1(α1)− q̂1(C1(α1;θ ,yn)). (5)
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Therefore, the computation is greatly simplified, since we need only the value
of the coverage probability C1(α1;θ ,yn) = EY |Yn{FZ1|Yn(q̂1(α1)|Yn;θ)|Yn = yn;θ},
with FZ1|Yn(z1|yn;θ) the conditional distribution function of Z1 given Yn = yn, which
can be usually estimated using a simple parametric bootstrap procedure.

The approach based on high-order analytical corrections can be extended to the
multivariate case. In particular, Corcuera and Giummolè [2] specify a system of
improved prediction limits q̃1(α1), . . . , q̃m(αm), where q̃1(α1) is defined as in (4),
whereas each q̃i(αi), i = 2, . . . ,m, requires a further correction term in order to ac-
count for the additional dependence introduced, among the limits, by substituting θ

with the same θ̂ . This second correction term is far more complex that the first one.
In order to simplify the calculation, using a general result presented in [5], we

prove that it is possible to extend the Ueki and Fueda’s procedure to the multivariate
setting. More precisely, an asymptotically equivalent expression for the improved
simultaneous prediction limits corresponds to

q̃i(αi) = 2q̂i(αi)− q̂i(Ci(αi;θ ,yn,z(i−1))), i = 1, . . . ,m, (6)

with z(i−1) = (z1, . . . ,zi−1). For i = 1, C1(α1;θ ,yn) is the coverage probability of
q̂1(α1) as given in (5) and, for i = 2, . . . ,m, we consider the conditional coverage
probability of q̂i(αi) given Z(i−1) = z(i−1) defined as

Ci(αi;θ ,yn,z(i−1)) =

EY |Yn

{
fZ(i−1)|Yn (z(i−1)|Yn;θ)

fZ(i−1)|Yn (z(i−1)|Yn;θ̂)
FZi|Zi−1(q̂i(αi)|zi−1;θ)|Yn = yn,θ

}
EY |Yn

{
fZ(i−1)|Yn (z(i−1)|Yn;θ)

fZ(i−1)|Yn (z(i−1)|Yn;θ̂)
|Yn = yn,θ

} ,

(7)
where FZi|Zi−1(zi|zi−1;θ) is the conditional distribution function of Zi given Zi−1 =
zi−1 and fZ(i−1)|Yn(z(i−1)|yn;θ) is the joint conditional density of Z(i−1) given Yn = yn.
Also the conditional coverage probability (7) can be estimated using a fairly simple
bootstrap parametric approach and, since the explicit expression for the correction
terms is not required, this greatly simplifies the computation of the improved limits.

3 An application to a simple autoregressive model

Let us consider a stationary AR(1) process {Yj} j≥1 defined as

Yj = µ +ρ (Yj−1−µ)+ ε j, j ≥ 1,

where µ ∈ R, |ρ|< 1 and {ε j} j≥1 is a sequence of independent normal distributed
random variables with zero mean and variance σ2 > 0. Then, using the notation
introduced in Section 1, Y = (Y1, . . . ,Yn), Z = (Z1, . . . ,Zm) = (Yn+1, . . . ,Yn+m) and
θ = (θ1,θ2,θ3) = (µ,ρ,σ2) is the unknown model parameter. Furthermore θ̂ =
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(µ̂, ρ̂, σ̂2) is the vector of the corresponding maximum likelihood estimators which,
in this case, are explicitly known.

Since Zi given Zi−1 = zi−1, i = 1, . . . ,m, follows a normal distribution with mean
µ +ρ (zi−1−µ) and variance σ2, it is immediate to define the estimative prediction
region Re(Y,α) as specified by (3), with simultaneous prediction limits q̂i(αi) =
µ̂+ ρ̂ (zi−1− µ̂)+uαi σ̂ , i= 1, . . . ,m. Here, uαi is such that Φ(uαi) =αi, where Φ(·)
is the distribution function of a standard normal random variable, and ∏

m
i=1 αi = α .

Using the bootstrap-based procedure outlined in Section 2, we obtain the modified
simultaneous prediction limits (6), which are supposed to improve the coverage
accuracy of the estimative solution.

We also consider a sequence of m marginal prediction limits, which correspond
the the plug-in estimates of the αi-quantile, for i= 1, . . . ,m, of the conditional distri-
bution of Zi given Yn = yn. Notice that the first marginal prediction limit corresponds
to q̂1(α1). These prediction limits are computed repeatedly one period at a time and
they define a rectangular-shaped prediction region. In this case, the nominal cover-
age probability is not equal to ∏

m
i=1 αi = α , since the component prediction limits

are not independent of each other. Furthermore, by applying a bootstrap-calibrated
procedure to these marginal prediction limits, as supposed to be independent, we try
to improve, also in this different situation, the coverage accuracy of the correspond-
ing prediction region.

Table 1 presents the results of a preliminary simulation study for comparing
the coverage accuracy of prediction regions based on estimative and bootstrap-
calibrated simultaneous prediction limits and on estimative and bootstrap-calibrated
marginal prediction limits. Conditional coverage probabilities, with nominal level
α = 0.9,0.95, are estimated using 1,000 samples of dimension n = 50,100 simu-
lated from an AR(1) model with the last observation fixed to yn = 1 and assuming
y0 = 0; indeed, we consider µ = 1, σ2 = 1 and (a) ρ = 0.5, (b) ρ = 0.8. The predic-
tion regions have dimension m = 5,10 and αi = α1/m, i = 1, . . . ,m. The bootstrap
procedure is based on 1,000 conditional bootstrap samples. The results are in ac-
cordance with the theoretical findings and show that the improved bootstrap-based
procedures remarkably improve on the estimative ones. The improvement is more
pronounced when the dimension m of the future random vector is high with respect
to n. Moreover, the bootstrap-calibrated technique seems to improve the coverage
accuracy of the marginal estimative prediction limits as-well, accounting also for
the dependence among the component prediction limits. This is an important point
which require further attention.

Finally, we conclude this section by presenting the following Figure 1, which de-
scribes a simulated path of dimension n = 80 from an AR(1) Gaussian model with
y0 = 1, µ = 1, σ2 = 1 and ρ = 0.5, and a sequence of m = 50 future simulated
observations generated from the same model. Moreover, we draw the sequence of
estimative and improved simultaneous prediction intervals with level αi = 0.9, to-
gether with the estimative and improved marginal prediction intervals with the same
nominal level. The simultaneous prediction intervals account for the actual evolu-
tion of the interest time series. Note that, using the bootstrap-based approach, the
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Table 1 AR(1) Gaussian model with µ = 1, σ2 = 1 and (a) ρ = 0.5, (b) ρ = 0.8. Conditional
coverage probabilities for the simultaneous (estimative and improved) and marginal (estimative
and improved) prediction limits of level α = 0.9,0.95, with m = 5,10. Estimation is based on
1,000 Monte Carlo conditional (on yn = 1) samples of dimension n = 50,100, with y0 = 0. The
bootstrap procedure is based on 1,000 conditional bootstrap samples.

(a) (b)
α n m Simultaneous Marginal Simultaneous Marginal

Estimative Improved Estimative Improved Estimative Improved Estimative Improved
0.9 50 5 0.860 0.905 0.885 0.910 0.860 0.908 0.878 0.897

10 0.838 0.898 0.838 0.881 0.824 0.869 0.832 0.866
100 5 0.884 0.907 0.888 0.896 0.886 0.890 0.886 0.890

10 0.882 0.913 0.889 0.910 0.875 0.914 0.904 0.910
0.95 50 5 0.921 0.953 0.936 0.955 0.920 0.956 0.924 0.948

10 0.905 0.946 0.900 0.931 0.888 0.929 0.884 0.915
100 5 0.938 0.954 0.932 0.946 0.937 0.957 0.933 0.940

10 0.937 0.962 0.940 0.955 0.934 0.958 0.951 0.958

estimative prediction limits are suitably calibrated in order to improve the coverage
accuracy.
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Fig. 1 Simulated observations from an AR(1) Gaussian model with y0 = 1, µ = 1, σ2 = 1 and
ρ = 0.5. Simultaneous estimative (dashed) and improved (solid) prediction intervals and marginal
estimative (dotted) and improved (dot-dashed) prediction intervals with coverage probability 0.9.
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